A Reduced-Complexity Fast Algorithm for Software Implementation of the IFFT/FFT in DMT Systems

نویسندگان

  • Tsun-Shan Chan
  • Jen-Chih Kuo
  • An-Yeu Wu
چکیده

The discrete multitone (DMT) modulation/demodulation scheme is the standard transmission technique in the application of asymmetric digital subscriber lines (ADSL) and very-high-speed digital subscriber lines (VDSL). Although the DMT can achieve higher data rate compared with other modulation/demodulation schemes, its computational complexity is too high for costefficient implementations. For example, it requires 512-point IFFT/FFT as the modulation/demodulation kernel in the ADSL systems and even higher in the VDSL systems. The large block size results in heavy computational load in running programmable digital signal processors (DSPs). In this paper, we derive computationally efficient fast algorithm for the IFFT/FFT. The proposed algorithm can avoid complex-domain operations that are inevitable in conventional IFFT/FFT computation. The resulting software function requires less computational complexity. We show that it acquires only 17% number of multiplications to compute the IFFT and FFT compared with the Cooly-Tukey algorithm. Hence, the proposed fast algorithm is very suitable for firmware development in reducing the MIPS count in programmable DSPs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Fourier Transform Processors: Implementing FFT and IFFT Cores for OFDM Communication Systems

The terms Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT) are used to denote efficient and fast algorithms to compute the Discrete Fourier Transform (DFT) and the Inverse Discrete Fourier Transform (IDFT) respectively. The FFT/IFFT is widely used in many digital signal processing applications and the efficient implementation of the FFT/IFFT is a topic of continuous research.

متن کامل

An Effective Design of 128 Point FFT/IFFT Processor UWB Application Utilizing Radix - (16+8) Calculation

In this paper, we present a 128-point FFT/IFFT processor for ultrawideband (UWB) systems. The proposed FFT is developed based on the higher radix -2 4 . It reduces computational complexity and hardware requirement compared to conventional radix -2 FFT. Since the proposed pipelined architecture for 128-point FFT is designed using mixed-radix (16+8) multipath delay feedback (MRMDF). The proposed ...

متن کامل

Design and Implementation of 32 Bit FFT using Radix-2 Algorithm

-Fast Fourier Transform (FFT) processing is one of the key procedures in popular Orthogonal Frequency Division Multiplexing (OFDM) communication systems. Structured pipeline architectures, low power consumption, high speed and reduced chip area are the main concerns in this VLSI implementation. In this paper, the efficient implementation of FFT/IFFT processor for OFDM applications is presented....

متن کامل

VLSI Implementation of a 2x2 MIMO-OFDM System on FPGA

-Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) technology is an attractive transmission technique for wireless communication systems with multiple antennas at transmitter and receiver. The core of this technology is that it divides one data stream to many. Hence, data rate, reliability and diversity can be increased along with the stability for multipath ...

متن کامل

A High-Speed Two-Parallel Radix-24 FFT/IFFT Processor for MB-OFDM UWB Systems

This paper presents a novel high-speed, low-complexity two-parallel 128-point radix-24 FFT/IFFT processor for MB-OFDM ultrawideband (UWB) systems. The proposed high-speed, low-complexity FFT architecture can provide a higher throughput rate and low hardware complexity by using a two-parallel data-path scheme and a single-path delayfeedback (SDF) structure. The radix-24 FFT algorithm is also rea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2002  شماره 

صفحات  -

تاریخ انتشار 2002